REACTIONS OF γ -SULTINES WITH ELECTROPHILIC REAGENTS. 2*. BROMINATION OF 3,5-DIARYL-1,2-OXATHIOLANE 2-OXIDES IN THE PRESENCE OF LEWIS ACIDS

E. V. Grigor'ev and L. G. Saginova

The bromination of 3,5-diaryl-1,2-oxathiolane 2-oxides (γ -sultines) has been studied in the presence of added Lewis acids. It was discovered that γ -sultines with donor substituents react with bromine with ring fission and conjugated addition of the nucleophilic reactant. Possible mechanisms for the reaction are discussed based on the data obtained.

Keywords: 1,3-diaryl-1-bromo-3-ethoxypropane, 1,3-diaryl-1,3-diethoxypropane, diastereomers, Lewis acids, 1,2-oxathiolane 2-oxides (γ -sultines), bromination, diastereoselectivity.

Bromination of 3,5-diaryl-1,2-oxathiolane 2-oxides in chloroform containing 1% ethanol leads to the preferential formation of 1,3-diaryl-1,3-dibromopropanes and an insignificant quantity of the corresponding 1,3-diaryl-1-bromo-3-ethoxypropanes [1].

The present work is devoted to a study of the bromination of 3,3-diaryl-1,2-oxathiolane 2-oxides in chloroform in the presence of Lewis acids. The initial compounds were 3,5-diphenyl-1,2-oxathiolane 2-oxide (1a), 5-(4-methoxyphenyl)-3-phenyl-1,2-oxathiolane 2-oxide (1b), and 3,5-bis(4-methoxyphenyl)-1,2-oxathiolane 2-oxide (1c). The sultines 1a-c, obtained by the reaction of the appropriate 1,2-diaryl-cyclopropanes with liquid sulfur dioxide, exist as four diastereomers: *A cis*-3,5-diaryl-1,2-oxathiolane (2,3-*cis*)-2-oxide; *B cis*-3,5-diaryl-1,2-oxathiolane (2,3-*trans*)-2-oxide; *C trans*-3,5-diaryl-1,2-oxathiolane (2,3-*trans*)-2-oxide [2].

The γ -sultines **1a-c** were used only as diastereomer A in this work.

We discovered that on using equimolar additions of HgO, AlBr₃, and ZnBr₂ to the bromination of sultines **1a-c** the yield of bromoethoxy substituted compounds was significantly increased (see Table 1). The compositions of the reaction mixtures were determined by ¹H NMR spectra, the assignment of signals of diastereomers **2** and **3** was carried out as described previously in [1]. The preferential formation of bromoethoxypropanes on brominating sultine **1b** may be explained using added ZnBr₂ as example.

The role of the additive probably comprises fission of bromide ion from the intermediate 7b and binding it in a complex, which enables a weak nucleophile such as ethyl alcohol to interact with the resulting carbocation 8b, preventing competition from the bromide anion. This effect was first discovered when using

^{*} For Part 1 see [1].

Moscow M. V. Lomonosov State University, Moscow 119899, Russia; e-mail: sag@org.chem.msu.ru, evg@org.msu.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii., No. 2, pp. 228-233, February, 2003. Original article submitted April 19, 2000.

HgO and also on adding AlBr₃, but the best results were achieved when using ZnBr₂ obtained *in situ* from zinc dust and bromine in chloroform immediately before reaction with the sultine (Table 1).

TABLE 1. Interaction of Diastereomers A of γ-Sultines **1a-c** with Bromine in CHCl₃–EtOH (1%) in the Presence of Additives at -15°C

Substrate	Additive	Time,	Composition of r mixture	eaction	Stereochemical composition of reaction mixture		
			Reaction products	Substrate	Reaction products	Substrate	
1a*	ZnBr ₂	24	2a, 46% 4a+5a, 28%	1a, 26%	dl, 100% 1R*,3R*/1R*,3S* = = 44/56	A, 100%	
1b	HgO	2	2b+3b, 13% 4b+5b, 87%		threo/erythro = 50/50 1R*,3R*/1R*,3S* = = 50/50		
	HgO	3	4b + 5b , 90%* ²		1R*,3R*/1R*,3S* = 33/67		
	AlBr ₃	24	2b+3b, 9% 4b+5b, 80%	1b , 11%	threo/erythro = $43/67$ $1R*,3R*/1R*,3S* = 50/50*^3$		
	$ZnBr_2$	1.5	4b + 5b , 100%		1R*,3R*/1R*,3S* = 33/67		
	$ZnBr_2$	1	4b + 5b , 58%	1b , 42%	1R*,3R*/1R*,3S* = 36/64	A/B/C/D = = 54/21/18/7	
1c	ZnBr ₂ * ⁴	1.5	10c+11c, 95%* ²		dl/meso = 50/50		

^{*} Reaction was carried out at +20°C.

^{*2} Yield of substance isolated.

^{*&}lt;sup>3</sup> Diastereomeric composition not determined.

^{*4} Twofold excess of ZnBr₂ used.

On carrying out the reaction in the presence of additives the main product in a series of experiments was a mixture of diastereomers of 1-bromo-3-ethoxy-3-(4-methoxyphenyl)-1-phenylpropane (**4b**, **5b**) with admixture of 1,3-dibromo-1-(4-methoxyphenyl)-3-phenylpropanes (**2b**, **3b**). The molar ratio of diastereomers **4b** and **5b** varied from 1:1 to 1:2. The generally detected predominant formation of the (R^* , S^*) diastereomer **5b** may be explained in the following way. Conversion of intermediate **6b** into **7b** occurs with inversion of configuration at the $C_{(3)}$ atom, then on forming carbocation **8b** contact ion pair appears and attack of ethanol takes place predominantly from the rear with inversion of the configuration of the $C_{(5)}$ atom of the sultine. On putting diastereomer A ($2S^*$, $3S^*$, $5R^*$) of sultine **1b** into the reaction inversion of the configuration of the $C_{(3)}$ and $C_{(5)}$ atoms leads to the formation of the (R^* , S^*)-diastereomer **5b** (see Table 1).

It should be mentioned that in reactions of diastereomer A of sultine **1b** unreacted substrate isolated from the reaction mixture was an equilibrium mixture of diastereomers A-D (Table 1). The isomerization of 3,5-diaryl-1,2-oxathiolane 2-oxides in the presence of Lewis acids, probably proceeding through the formation of open carbocationic intermediates, was described previously in [2].

As was assumed previously in [1], bromination of sultine **1c** proceeds with the sequential formation of two carbocations, which makes possible the introduction of two nucleophilic substituents. This was confirmed on brominating sultine **1c** in chloroform solution in the presence of a twofold excess of ZnBr₂, as a result of which an equimolar mixture of the diastereomers of diethoxy-substituted compounds **9c** and **10c** was isolated in 95% yield.

It was also shown that bromination of diphenylsultine 1a-A in chloroform containing ethanol (1%) in the presence of $ZnBr_2$ leads to the formation of 46% dl-dibromide 2a and 28% of an equimolar mixture of the diastereomers of 1-bromo-3-ethoxy-1,3-diphenylpropane.

It is therefore possible to assume that in the presence of ZnBr₂ the bromination of sultine **1a** may proceed partially through the formation of a carbocationic intermediate.

TABLE 2. ¹H NMR Spectra of Compounds **4a,b**, **5a,b**, **10c**, and **11c**

Compound	Chemical shifts, δ , ppm (coupling constants, J , Hz)								
Compound	$CH_3 (t, {}^3J = 7.0)$	CH ₂	CH ₂ O	CH ₃ O	CHO, dd	CHBr, dd	H arom.		
4a	1.24 (3H)	2.42 (2H, m)	3.30-3.50* (2H, m)	_	4.62 (1H, $^{3}J = 3.6, ^{3}J = 9.6)$	5.34 (1H, ${}^{3}J$ = 4.0, ${}^{3}J$ = 7.2)	7.3-7.5 (10H, m)		
5a	1.19 (3H)	2.43* ² (2H, m)	3.30-3.50 (2H, m)	_	$4.12 (1H, {}^{3}J = 2.4, {}^{3}J = 9.6)$	5.05 (1H, ${}^{3}J$ = 3.2, ${}^{3}J$ = 9.6)	7.3-7.5 (10H, m)		
4b	1.23 (3H)	2.45 (2H, m)	$3.40; 3.46*^{2} (2H,$ $^{2}J_{AB} = 9.2, ^{3}J = 7.0)$	3.82 (3H, s)	$4.55 (1H, {}^{3}J = 3.8, {}^{3}J = 9.5)$	5.33 (1H, ${}^{3}J$ = 4.1, ${}^{3}J$ = 10.4)	6.92 (2H, d); 7.27 (2H, d, ${}^{3}J$ = 8.8); 7.3-7.5 (5H, m)		
5b	1.15 (3H)	2.45 ; $2.84*^3$ (2H, $^2J_{AB} = 14.0$)	$3.13; 3.30*^{2} (2H,$ $^{2}J_{AB} = 9.4, ^{3}J = 7.0)$	3.81 (3H, s)	$4.06 (1H, {}^{3}J_{AM} = 5.6, $ ${}^{3}J_{BM} = 8.2)$	$5.02 (1H, {}^{3}J_{AX} = 8.0,$ ${}^{3}J_{BX} = 7.4)$	6.90 (2H, d); 7.22 (2H, d, ${}^{3}J = 8.8$); 7.3-7.5 (5H, m)		
10c	1.19 (6H)	1.96 (2H, dd, ${}^{3}J = 6.2, {}^{3}J = 7.4$)	$3.32; 3.43*^4$ $(^2J_{AB} = 9.4, ^3J = 7.0)$	3.79 (6H, s)	4.48 (2H, ${}^{3}J = 6.2, {}^{3}J = 7.4)$	_	6.87 (4H, d); 7.24 (4H, d, ${}^{3}J = 8.8$)		
11c	1.14 (6H)	$1.80; 2.43*^4 (^2J_{AB} = 13.6)$	$3.19; 3.28*^2$ $(^2J_{AB} = 9.4, ^3J = 7.0)$	3.81 (6H, s)	$^{4.11}$ (2H, $^{3}J_{AX} = 6.8, ^{3}J_{BX} = 7.8$)	_	6.86 (4H, d); 7.18 (4H, d, ³ J = 8.8)		

^{**} Signals were partially overlapped by the lines of other compounds.

** AB portion of ABX₃ system.

** AB portion of ABMX system.

** AB portion of ABX₂ system.

TABLE 3. ¹³C NMR Spectra of Compounds 4b, 5b, 10c, and 11c

Com-	Chemical shifts, δ, ppm.							
pound	CH ₃	CH ₂	CHBr	CH ₃ O	CH ₂ O	СНО	CH arom.	C arom.
4b	15.27	48.16	52.80	55.19	64.11	8.92	113.81, 127.32, 127.69, 128.24, 128.60	134.00, 142.19, 159.15
5b	15.23	48.22	51.50	55.19	63.73	79.27	113.87, 127.43, 127.76, 128.33, 128.64	133.30, 141.48, 159.25
10c + 11c	15.43, 15.52	46.43, 47.50	_	55.34	63.76, 64.07	77.65, 78.73	113.81, 127.87, 128.11	134.51, 135.28, 158.99, 159.11

EXPERIMENTAL

The ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were obtained on a Varian VXR 400 instrument in CDCl₃ at 30°C. The mass spectra were measured on a Hewlett-Packard Engine GC-MS chromatomass spectrometer at an energy of ionizing electrons of 70 eV.

3,5-Diaryl-1,2-oxathiolane 2-Oxides 1a-c were obtained by the interaction of the appropriate 1,2-diarylcyclopropanes with sulfur dioxide by the procedure of [3,4].

Bromination of 3,5-Diaryl-1,2-oxathiolane 2-Oxides (1a-c) (General Procedure). A. HgO or AlBr₃ (0.3 mmol) was added to a solution of sultine (0.3 mmol) in chloroform (15 ml) containing 1% ethanol and the mixture cooled to -15°C. A solution of bromine (0.3 mmol) in chloroform (10 ml) was added with stirring during 1 h. The mixture was stirred at -15°C for the time indicated in Table 1, then poured into water and ice. The organic layer was separated, washed with 10% Na₂SO₃ solution until colorless, then twice with water, and dried over CaCl₂.

B. A mixture of zinc dust (0.15 mmol) and chloroform (5 ml) containing 1% ethanol was cooled to -15°C. A solution of sultine (0.15 mmol) in chloroform (10 ml) was added with stirring during 15 min. After this the reaction mixture was stirred at -15°C for the time given in Table 1. The mixture was then treated as described in procedure A.

 $(1R^*,3R^*)/(1R^*,3S^*)$ -1-Bromo-3-ethoxy-3-(4-methoxyphenyl)-1-phenylpropane (4b/5b). Yield 90% (by A using HgO) or 100% (by B). Cream colored crystals; mp 127-130°C (decomp.) (CCl₄-pentane). Found, %: C 61.33; H 6.43. C₁₈H₂₁BrO₂. Calculated, %: C 61.90; H 6.06. Data of ¹H and ¹³C NMR spectra are given in Tables 2 and 3.

dl/meso-1,3-Diethoxy-1,3-bis(4-methoxyphenyl)propane (9c/10c). B. Yield 95% (twofold excess of ZnBr₂). Mass spectrum, m/z (I_{rel} , %): 344 [M⁺] (4), 298 (20), 165 (100), 137 (36), 109 (13), 95 (7), 77 (7). Data of ¹H and ¹³C NMR spectra are given in Tables 2 and 3.

REFERENCES

- 1. E. V. Grigor'ev and L. G. Saginova, *Khim. Geterotsikl. Soedin.*, 120 (2003).
- 2. N. V. Novozhilov, L.G. Saginova, E. V. Grigor'ev, and V. S. Petrosyan, *Vestn. Mosk. Univ., Ser. 2, Khim.*, **35**, 273 (1994).
- 3. O. B. Bondarenko, A. V. Buevich, T. I. Voevodskaya, L. G. Saginova, and Yu. S. Shabarov, *Zh. Org. Khim.*, **24**, 1937 (1988).
- 4. N. V. Novozhilov, E. V. Grigor'ev, L. G. Saginova, and V. S. Petrosyan, *Vestn. Mosk. Univ., Ser. 2, Khim.*, 33, 502 (1992).